Answer all seven questions on blank letter-size papers. Show ALL work, including intermediate steps. Failure to show intermediate steps will result in zero credit. Please write your name on your exam.

1. Find the first derivative of the following function.

$$
f(x)=\frac{e^{2 x^{2}-4 x+3} \cdot \ln \left(2 x^{2}-4 x+3\right)}{x}
$$

Solution:

Apply the chain rule and product rule to find the derivative of the numerator.

$$
(4 x-4) e^{2 x^{2}-4 x+3} \ln \left(2 x^{2}-4 x+3\right)+e^{2 x^{2}-4 x+3} \frac{4 x-4}{2 x^{2}-4 x+3}
$$

The derivative of the denominator is $=1$.
Given the above, we can find the derivative of $f(x)$ using the quotient rule:

$$
f^{\prime}(x)=\frac{(4 x-4) e^{2 x^{2}-4 x+3} \ln \left(2 x^{2}-4 x+3\right)+e^{2 x^{2}-4 x+3} \frac{4 x-4}{2 x^{2}-4 x+3}-\left(e^{2 x^{2}-4 x+3} \cdot \ln \left(2 x^{2}-4 x+3\right)\right)}{x^{2}}
$$

2. Using the following function, please
(a) Find the first derivative.
(b) Determine the location of stationary points.
(c) Determine whether each point is a local minimum, maximum or an inflection point using the second derivative. Please be sure to say how you have determined it is a local maximum, minimum or inflection point.

$$
f(x)=\frac{e^{4 x^{3}}}{e^{-2 x^{2}}} e^{-x^{3}}
$$

Solution:

(a) First, we can simplify the expression of the function by using the power law.

$$
f(x)=e^{4 x^{3}-x^{3}+2 x^{2}}=e^{3 x^{3}+2 x^{2}}
$$

Then we can calculate out the first derivative

$$
f^{\prime}(x)=\left(9 x^{2}+4 x\right) \times e^{3 x^{3}+2 x^{2}}
$$

(b) First Order Condition $\mathrm{f}^{\prime}(\mathrm{x})=0$

Since exponential function is always >0, the FOC holds if and only if $9 x^{2}+4 x=0$.
Thus, $x=0$ and $-4 / 9$ are the location of stationary points.
(c) Second order Sufficient Condition Test

$$
f^{\prime \prime}(x)=(18 x+4) e^{3 x^{3}+2 x^{2}}+\left(9 x^{2}+4 x\right) e^{3 x^{3}+2 x^{2}}
$$

$$
\mathrm{f}^{\prime \prime}(0)=4>0
$$

When $\mathrm{x}=0$, second order derivative is positive, it is a minimum.
When $x=-4 / 9, \mathrm{f}^{\prime \prime}(-4 / 9)<0$. Because the second derivative is negative we know that it is a maximum.
3. Solve the following system of equations using Cramer's Rule.

$$
\begin{gathered}
4 x+3 y-2 z=7 \\
x+y=5 \\
3 x+z=4
\end{gathered}
$$

Solution:

Convert the system into a matrix form will be a lot easier.

$$
\left[\begin{array}{ccc}
4 & 3 & -2 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
7 \\
5 \\
4
\end{array}\right]
$$

Apply Cramer's Rule

$$
\begin{gathered}
x=\frac{\left|\begin{array}{lll}
7 & 3 & -2 \\
5 & 1 & 0 \\
4 & 0 & 1
\end{array}\right|}{\left|\begin{array}{lll}
4 & 3 & -2 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right|}=\frac{7+8-15}{4+6-3}=\frac{0}{7}=0 \\
y=\frac{\left|\begin{array}{lll}
4 & 7 & -2 \\
1 & 5 & 0 \\
3 & 4 & 1
\end{array}\right|}{\left|\begin{array}{lll}
4 & 3 & -2 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right|}=\frac{20-8+30-7}{4+6-3}=\frac{35}{7}=5 \\
\mathrm{z}=\frac{\left|\begin{array}{lll}
4 & 3 & 7 \\
1 & 1 & 5 \\
3 & 0 & 4
\end{array}\right|}{\left|\begin{array}{lll}
4 & 3 & -2 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right|}=\frac{16+45-21-12}{4+6-3}=\frac{28}{7}=4
\end{gathered}
$$

4. Evaluate the following definite integral

$$
\int_{0}^{1} \frac{2\left(e^{2 x}-e^{-2 x}\right)}{e^{2 x}+e^{-2 x}} d x
$$

Solution:

Apply the rules of change of variables. Let $u=e^{2 x}+e^{-2 x}$,
Then

$$
\frac{\mathrm{du}}{\mathrm{dx}}=2\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)
$$

Solving for dx gives

$$
d x=\frac{d u}{2\left(\mathrm{e}^{2 \mathrm{x}}-\mathrm{e}^{-2 \mathrm{x}}\right)}
$$

Inserting the above and simplifying the original integral becomes

$$
\int \frac{1}{\mathrm{u}} \mathrm{du}=\ln \mathrm{u}=\ln \left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)
$$

Evaluate from $\mathrm{x}=0$ to $\mathrm{x}=1$,

$$
\begin{gathered}
\left.\ln \left(\mathrm{e}^{2 \mathrm{x}}+\mathrm{e}^{-2 \mathrm{x}}\right)\right|_{\mathrm{x}=0} ^{1}=\ln \left(\mathrm{e}^{2}+\mathrm{e}^{-2}\right)-\ln 2 \\
=\ln \left(\frac{\mathrm{e}^{2}+\mathrm{e}^{-2}}{2}\right)
\end{gathered}
$$

5. Solve the three unknown variables x, y, z using the matrix inversion technique discussed in this course.

$$
\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 2 & 3 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
12 \\
6 \\
9
\end{array}\right]
$$

Solution:

Let

$$
A=\left[\begin{array}{lll}
2 & 2 & 1 \\
1 & 2 & 3 \\
1 & 1 & -1
\end{array}\right]
$$

Then the original system becomes

$$
A\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=\left[\begin{array}{l}
12 \\
6 \\
9
\end{array}\right]
$$

Find the minors and cofactors.

Co-factor A

$$
\text { Cofactor } A=\left[\begin{array}{lll}
\left|\begin{array}{ll}
2 & 3 \\
1 & -1
\end{array}\right| & -\left|\begin{array}{ll}
1 & 3 \\
1 & -1
\end{array}\right| & \left|\begin{array}{ll}
1 & 2 \\
1 & 1
\end{array}\right| \\
-\left|\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right| & \left|\begin{array}{ll}
2 & 1 \\
1 & -1
\end{array}\right| & -\left|\begin{array}{ll}
2 & 2 \\
1 & 1
\end{array}\right| \\
\left|\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right| & -\left|\begin{array}{ll}
2 & 1 \\
1 & 3
\end{array}\right| & \left|\begin{array}{ll}
2 & 2 \\
1 & 2
\end{array}\right|
\end{array}\right]=\left[\begin{array}{lll}
-5 & 4 & -1 \\
3 & -3 & 0 \\
4 & -5 & 2
\end{array}\right]
$$

Adjoint A (transpose of Co-factor)

$$
\left[\begin{array}{lll}
-5 & 3 & 4 \\
4 & -3 & -5 \\
-1 & 0 & 2
\end{array}\right]
$$

Now we need to find the value of the Determinant.

$$
D=2(-5)+2(4)+1(-1)=-3
$$

To find the inverse we multiple the adjoint by $\frac{1}{\operatorname{det} \mathrm{~A}}$.

$$
\begin{gathered}
\mathrm{A}^{-1}=-\frac{1}{3}\left[\begin{array}{lll}
-5 & 3 & 4 \\
4 & -3 & -5 \\
-1 & 0 & 2
\end{array}\right] \\
{\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]=-\frac{1}{3}\left[\begin{array}{lll}
-5 & 3 & 4 \\
4 & -3 & -5 \\
-1 & 0 & 2
\end{array}\right] \cdot 3\left[\begin{array}{l}
4 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
5 \\
-2
\end{array}\right]}
\end{gathered}
$$

6. Consider a function $y=f(x)=a x^{3}+b x^{2}+c x$. At the point $(1,5)$, the values of the first and second derivative are -1 and 0 respectively. Use this information to find the values of coefficient a, b, c.

Solution:

The question mentions three conditions.
The point $(1,5)$ is on the curve. So

$$
f(1)=5
$$

Thus we have

$$
a+b+c=5
$$

The slope of tangent line at $(1,5)$ is equal to -1 . Thus,

$$
f^{\prime}(1)=-1
$$

$$
3 a+2 b+c=-1
$$

Lastly, the the second derivative value is equal to zero at $(1,5)$. Thus,

$$
\begin{aligned}
& f^{\prime \prime}(1)=0 \\
& 6 a+2 b=0
\end{aligned}
$$

We know have three equations and three unknowns.

$$
\begin{gathered}
a+b+c=5 \\
3 a+2 b+c=-1 \\
6 a+2 b=0
\end{gathered}
$$

Solve out the system of equations, we find

$$
a=6, b=-18, c=17
$$

That is,

$$
f(x)=6 x^{2}-18 x+17
$$

7. Solve for following indefinite integral.

$$
\int \frac{\sqrt[3]{\ln x}}{x} d x
$$

Solution:

Let $u=\ln x$

$$
\frac{\mathrm{du}}{\mathrm{dx}}=\frac{1}{\mathrm{x}}
$$

Solving for dx gives:

$$
\mathrm{dx}=\mathrm{x} * \mathrm{du}
$$

Inserting the defintion of u and $d x$ gives

$$
\int \frac{\sqrt[3]{\mathrm{u}}}{\mathrm{x}} \mathrm{x} * d \mathrm{~d}
$$

Cancelling terms gives

$$
\int \sqrt[3]{u} d u=\frac{3}{4} u^{\frac{4}{3}}+C
$$

Where $u=\ln x$, so the answer is

$$
\int \frac{\sqrt[3]{\ln x}}{x} d x=\frac{3}{4}(\ln x)^{\frac{4}{3}}+C
$$

